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1. INTRODUCTION

For plates simply supported along two opposite edges, an exact solution generally exists in
the forms of trigonometric and hyperbolic functions [1]. However, the solution contains
some integration and frequency constants that have to be determined from the boundary
conditions. For an elastically restrained plate, these constants are functions of the sti!nesses
of the boundary springs and can be numerically obtained by solving a non-linear equation.
However, because of the number of involved variables (e.g., spring sti!nesses, plate aspect
ratio and the Poisson ratio), it is obviously impractical to tabulate the numerical results as
done for beams under various homogeneous boundary conditions. Consequently, one is
essentially forced to repeat a normally tedious procedure to "nd the solutions on his own.
As a matter of fact, probably due to the di$culty of such an approach, most existing
investigations have involved some kinds of simpli"cations with respect to the arrangement
or con"guration of the elastic restraints [2}14].
Plates loaded with features like masses and springs are also a subject of extensive

investigations [15}22]. Obviously, the loading condition will add another complicating
factor to the plate problems that are already complicated enough in regard to the variety of
boundary conditions. If an analytical method is employed, its complexity will usually
increase with the number of attached features. Although the number and locations of the
attachments may not be a signi"cant complicating factor, theoretically, in the
Rayleigh}Ritz method, they can still adversely a!ect the accuracy of the solution to
a certain extent. This is because the mode shapes of a loaded plate tend to become more
complicated, which makes it relatively di$cult to select or construct appropriate trial
functions.
For a plate that is simply supported or guided along each pair of opposite edges, its

displacement solution is almost automatically sought as a double Fourier series. In that
case, all the involved derivatives of the displacement can be directly obtained from the
Fourier series through term-by-term di!erentiation and the Fourier coe$cients are readily
obtained from the governing di!erential equation. However, the Fourier series method is
not widely used for other boundary conditions because of its potential convergence
problem. Making use of the Stoke's transformation concept, Chung [23] extended the
Fourier series method to the vibrations of circular cylinders under various homogeneous
boundary conditions. This technique was later adopted by Lin and Wang [24] to study the
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vibrations of simply supported beams with rotational end restraints. Such an approach,
however, is essentially only valid for beams under a boundary condition that prohibits the
beams from moving at any end. Otherwise, it is more than likely that the Fourier series
solution will face a convergence problem.
Simple polynomials have been used in combination with sinusoidal functions or Fourier

series expansions to satisfy certain boundary conditions [25}29]. Li [30] recently proposed
a simple and uni"ed Fourier series method for beams with arbitrary boundary conditions
by also expressing the beam displacement as a linear superposition of a Fourier series and
an auxiliary polynomial. However, unlike in the previous investigations, there the
polynomial function is used based on a totally di!erent consideration, that is, regardless of
boundary conditions, it is introduced to remedy any potential discontinuity problems
associated with the original beam displacement and its related derivatives at the ends.
Accordingly, the Fourier series will now represent a residual or conditioned beam
displacement that is continuous and has at least three continuous derivatives everywhere.
As a result, not only is it always possible to seek a solution in the form of a Fourier series for
beams with any boundary conditions, but also the solution is drastically improved with
respect to its accuracy and convergence. In this study, this technique will be extended to
plates that are simply supported along a pair of opposite edges and elastically restrained
along the others in a general manner. Moreover, the plates can be arbitrarily loaded with
a number of masses and springs. The reliability and robustness of the current solution are
demonstrated through numerical examples.

2. VIBRATION OF PLATES WITH ELASTIC RESTRAINTS ALONG EDGES

Figure 1 shows a rectangular plate simply supported along y"0, b and elastically
restrained along x"0, a (for clarity, only the rotational and linear springs are shown here
at x"0 and a respectively). The plate may also be loaded with a number of springs and
masses at arbitrary locations. The governing di!erential equation for the free vibration of
the plate can be written as
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Figure 1. An elastically restrained plate arbitrarily loaded with springs and masses.
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where w (x, y) is the #exural displacement and � is the angular frequency; D, � and h are,
respectively, the #exural rigidity, the mass density and the thickness of the plate; kM

�
and

KM
�
are the sti!nesses of the linear and rotational springs, respectively, located at (x

�
, y

�
) and

(x�
�
, y�

�
) and mN

�
is the concentrated mass at (xN

�
, y�

�
); and N

�
, N

�
and N

�
are, respectively,

the total numbers of the linear springs, rotational springs and masses attached to the
plate. The last term on the left side of equation (1) is due to the moments about
the y-axis applied by the rotational springs and can be derived by considering each of
the moments as a pair of closely spaced forces of equal amplitude and opposite directions.
The contribution of a moment about the x-axis can be taken into account in the same
manner.
The boundary conditions along the elastically restrained edges can be expressed as
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k
�
and k

�
are the linear sti!nesses, andK

�
andK

�
are the rotational sti!nesses of the elastic

supports along x"0 and a respectively. Equations (2)}(5) describe a general boundary
condition from which all the familiar homogeneous boundary conditions (i.e., the various
combinations of simply supported, clamped, free and guided) can be directly obtained by
accordingly choosing the spring sti!ness to be an extremely large or small number.
In the current investigation, a general solution to equations (1)}(5) will be sought in the

form of a Fourier series. The convergence of a Fourier expansion has been fully studied in
mathematics. An important theorem pertinent to this work states that [31]:

¸et f (x) be a continuous function of period 2a and have n derivatives, when n!1 derivatives
are continuous and the nth derivative is absolutely integrable (the nth derivative may
not exist at certain points). ¹hen the coe.cients of its Fourier expansion,
f (x)"��

���
a
�
sin �
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x, (�
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"m	/a), satisfy that lim
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"0.

Mathematically, expanding f (x), x3[0, a], into a Fourier sine series is equivalent to
viewing it as part of periodic function which is simply f (x) over [0, a] and de"ned as !f (x)
over (!a, 0). If f (x) is continuous over [0, a] and f (0) and f (a) are both identically zero, the
Fourier sine series then simply represents a continuous function of period 2a and converges
everywhere over the entire x-axis. However, when f (0) (or f (a)) is not equal to zero, the
Fourier sine series will still converge to zero at x"0 (or x"a), regardless of the actual
values of f (0) (or f (a)). In such a case, the Fourier series only represents a piecewise
continuous function. Therefore, the convergence of the Fourier series will become
questionable according to the above theorem.
A remedy to this problem is proposed in reference [30] where a polynomial is introduced

to take care of all the possible discontinuities with the original displacement function and its
relevant derivatives at the endpoints. Accordingly, the Fourier series now simply represents
a residual or conditioned displacement function that is periodic continuous and has at least
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three continuous derivatives everywhere. Based on the same consideration, the solution for
the current plate problem will be written as
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where p(x) denotes a polynomial which will be determined below.
Because the potential discontinuity problem is only associated with the sine series

expansions (of the displacement and its second derivative), the polynomial will be
particularly introduced to satisfy
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It is clear from equations (9)}(12) that unlike in the other techniques, the current
polynomial is not used to ensure the satisfaction of any particular boundary condition. The
displacement can also be expanded into a Fourier cosine series. In such a case, the
polynomial will be used to deal with any possible discontinuities of the "rst and third
derivatives (of the displacement) at the edges. Usually, a cosine series solution tends to
converge faster than that in the form of equation (8) for a plate which is allowed to move
along an edge. However, since the cosine series expansion has been adequately discussed in
references [30, 32], the current study will be focused on the sine series solution.
Mathematically, the lowest order polynomial that satis"es equations (9)}(12) can be

readily obtained as
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or, more concisely,
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Substitution of equations (8) and (13) into equations (2)}(7) results in
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From equations (17)}(20), the vector �� can be determined as
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Substituting equations (14) and (21) into equation (8), one immediately obtains
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In order to be capable dealing with plates loaded with spring and/or masses, equation (24)
needs to be modi"ed as
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Substituting equation (25) into equation (1) and following the Galerkin discretization
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In equation (26), it has been assumed that the summations over m and n are truncated to
the "rst M and N terms respectively. Obviously, the natural frequencies and eigenvectors
can now be easily obtained by solving a standard matrix eigenproblem. Since the
components of each eigenvector are actually the expansion coe$cients of the Fourier series,
the corresponding mode shape can be directly determined from equation (25). Finally, the
normalized mode shape, satisfying
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can be expressed as
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Again, it must be emphasized that the objective of introducing the polynomial is to
improve the accuracy and convergence of the Fourier series solution. The results will be
demonstrated below through numerical examples.

3. RESULTS AND DISCUSSIONS

First, let us consider a square plate that is clamped along x"0 and a. The clamped
boundary condition can be easily generated by simply setting the sti!nesses of the four
springs equal to in"nity (which is represented by a very large number, 10��, in the following
calculations). The characteristic equation for a C}S}C}S plate is well known as [1]
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Table 1 shows the "rst six frequency parameters �
�	

"�
�	
a���h/D estimated by using

di!erent numbers of terms in equation (24). The second subscript n of the frequency
parameter �

�	
indicates the number of half-sine waves in the y direction for the

corresponding mode and the "rst subscript m denotes the mth lowest mode for the given
index n. The results calculated from equation (41) are also presented in Table 1 for
comparison. It is seen that the current method has led to an excellent prediction even by
using a small number of terms.
The next example also deals with a familiar boundary condition: simply supported along

x"0 and free along x"a. This boundary condition is readily represented by setting
TABLE 1

Frequency parameters, �"�a���h/D, for a C}S}C}S square plate

�
�	

"�
�	
a���h/D

Solution �
��

�
��

�
��

�
��

�
��

�
��

Current, M"5 28)9514 54)7498 69)3275 94)6142 102)239 129)099
Current, M"10 28)9509 54)7438 69)3271 94)5866 102)219 129)096
Current, M"20 28)9509 54)7431 69)3270 94)5853 102)216 129)096
Equation (41) 28)9509 54)7431 69)3270 94)5853 102)216 129)096



TABLE 2

Frequency parameters, �"�a���h/D, for an S}S}F}S square plate

�
�	

"�
�	
a���h/D

Solution �
��

�
��

�
��

�
��

�
��

�
��

Current, M"5 11)6859 27)7971 41)2308 59)2435 62)3701 90)5177
Current, M"10 11)6846 27)7581 41)1985 59)0756 61)8838 90)3108
Current, M"20 11)6845 27)7564 41)1967 59)0659 61)8615 90)2948
Equation (44) 11)6845 27)7564 41)1967 59)0655 61)8606 90)2941

TABLE 3

¹he frequency parameters, ��"��a��h/	�D, for an S}S}S}S square plate with rotational
restraints along x"0 and a M"10
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��

��
��

��
��

��

0 4)0 25)0 100)0 289)0
10 6)16826 34)8307 124)569 335)975
100 8)14370 46)2673 160)131 417)339
R 8)60448 49)3408 171)089 445)823
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determined from
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In Table 2, the six lowest frequency parameters obtained from the use of di!erent numbers
of terms in the Fourier expansion are given. Again, the current solution shows an excellent
agreement with the classical solution, equation (44).
A remarkable convergence of the solution has been observed in both examples, which is

perhaps the most important characteristic of the current technique. Theoretically, because
of the existence of the free edge, the second example represents a more challenging case for
checking the convergence of a Fourier series solution.
Now, consider a plate elastically restrained against rotations along the edges x"0 and a.

The four lowest frequency parameters, �"�a���h/D, calculated by using only 10 terms
are listed in Table 3 for di!erent spring sti!nesses. For KK

�
a"KK

�
a"0 and

KK
�
a"KK

�
a"R, the boundary conditions at both edges will degenerated to the familiar

simply supported and clamped cases respectively. To understand the e!ects of the
(rotational) sti!ness on the modes, the mode shapes sliced at y"b/2 are plotted in
Figures 2}5. It is seen that as the sti!ness increases, the slopes towards the edges become
less steep which agrees with intuition. In Table 4, the calculated fundamental frequencies are
compared with the previous results for various combinations of the plate aspect ratio and
spring sti!ness.
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To further examine the accuracy and convergence of the solution, a more complicated
problem will be considered here: a square plate clamped along x"0 and elastically
restrained by two independent (rotational and translational) springs along x"a. After
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TABLE 4

¹he fundamental frequencies, ��"��a�b��h/	�D, for S}S}S}S plates with di+erent aspect
ratios and rotational sti+nesses. M"10

��"��a�b��h/	�D

b/a"0)5 b/a"1)0 b/a"1)5

KK
�
a"KK

�
a Current Reference [1]� Current Reference [1] Current Reference [1]

0 6)25 6)25 4)0 4)0 4)694 4)694
1 6)345 6)333 4)373 4)373 5)530 5)530
10 6)847 6)837 6)168 6)169 9)446 9)444
100 7)514 7)519 8)144 8)137 13)557 *

R 7)691 7)692 8)604 8)593 14)487 *

�See pp. 120}121.

TABLE 5

Frequency parameters, �"�a���h/D, for a C}S}E}S square plate, kK
�
a�"100 and

KK
�
a"10

�
�	

"�
�	
a���h/D

Solution �
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�
��

�
��

�
��

�
��

�
��

Current, M"5 19)4025 40)7803 44)8252 67)1697 81)6234 92)5912
Current, M"10 19)3985 40)7213 44)8115 67)0473 81)0794 92)5271
Current, M"20 19)3982 40)7187 44)8104 67)0424 81)0525 92)5217
Equation (45) 19)3982 40)7187 44)8104 67)0422 81)0514 92)5214
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lengthy, but straightforward, mathematical manipulations, the characteristic equation can
be obtained as
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�

#(n	/�)�(�� (1!2�)!n�	�(1!�)�#b�kK KK )sin �
�
sinh �

�



TABLE 6

Fundamental frequencies, �"�a���h/D, for a C}S}E}S square plate with various
combinations of the rotational and translational springs at x"a M"20

�"�a���h/D

KK
�
a kK

�
a�"0 kK

�
a�"10 kK

�
a�"100 kK

�
a�"R

0 12)6874 13)9315 19)2195 23)6463
10 13)4098 14)3460 19)3982 26)5556
100 13)6491 14)4891 19)4782 28)5523
R 13)6858 14)5114 19)4917 28)9509

TABLE 7

Frequency parameters, �"�a���h/D, for a C}S}E}S square plate with kK
�
a�"10 and

KK
�
a"0. M"N"10

�"�a���h/D

Modes 1 2 3 4 5 6

Simple plate 13)9316 33)6801 42)0911 63)3111 72)7221 90)8136
Loaded plate 14)6956 36)6446 42)0911 63)3111 69)7717 79)9377

Figure 6. The "rst mode of the plate: (a) unloaded; (b) loaded.
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#�
�
���(��

�
KK a!kK a�)cos �

�
sinh �

�

#�
�
���(��

�
KK a#kK a�)sin �

�
cosh �

�
"0, (45)

where �"b/a.
For kK

�
a�"100 and KK

�
a"10, the frequency parameters estimated by using di!erent

numbers of terms are given in Table 5 together with those calculated from equation (45).



Figure 7. The second mode of the plate: (a) unloaded; (b) loaded.
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The excellent accuracy and convergence of the current solution are again demonstrated.
The fundamental frequencies are shown in Table 6 for various combinations of the spring
sti!nesses.
Let us now assume in the last problem that kK

�
a�"10 and KK

�
a"0, and the plate carries

a concentrated mass, mN
�
/�ha�"0)5, at its center. In addition, the plate is reinforced at

(3a/4, a/2) by a structure which is represented by a translational sti!ness, kM
�
a�/D"100,

and a rotational sti!ness, KM
�
/D"100. In Table 7, several lowest frequency parameters

are presented for this plate and its unloaded counterpart as well. As expected, the third
and fourth modes are not a!ected by the addition of the mass and springs because they
all happen to fall on the nodal lines. The "rst two modes of the loaded and unloaded plates
are compared in Figures 6 and 7. A total of 100 terms, M"N"10, is used in this
calculation.

4. CONCLUSIONS

A simple and uni"ed method has been described for the vibration analysis of plates that
are simply supported along two opposite edges and elastically restrained along the others in
an arbitrary manner. The plate displacement is expressed as the combination of a Fourier
sine series and an auxiliary polynomial. The polynomial is introduced to take care of all the
possible discontinuities associated with the original displacement function and its relevant
derivatives at boundaries so that the Fourier series now simply represents a conditioned
displacement function with at least three continuous derivatives. As a result, the accuracy
and convergence of the Fourier series solution can be drastically improved as repeatedly
demonstrated by the numerical examples.
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